Programming Process = ssssssssss:

by Deborah R. Fowler &g

\/- variables
v/ truth statements
v/ looping
\/ e functions
e |/O
e lists
e classes/objects
e OOP

REVIEW

Presenter
Presentation Notes
So far we have covered variables and truth statements, before we go one we will introduce turtle graphics

~ap ° Programming Process
» Algorithms

~aP -+ Code Habits and details

 Variables
e Syntactic sugar

Today

Presenter
Presentation Notes
Today we will step back for a moment and talk about the process of programming and good habits

Programming requires
clear and careful creative thinking

Programming
Process

Presenter
Presentation Notes
Let’s step back for a moment and talk about the programming process in general.

Concepts
learned are
building blocks
S0 ask questions
early on!

algorithms

Concepts

What Is Programming?

Telling the computer what to do

* Problem solving
* Algorithms - plan

Presenter
Presentation Notes
Programming is problem solving, coming up with a plan and then implementing it in a language. For this class, that happens to be Python, however the ALGORITHM or step by step SOLUTION is not code dependent. The language you select will have a certain syntax. Robot/Recipe/Directions.
An algorithm is like an outline for an essay.

e Analysis
* Design — identify key concepts involved In a solution
* Program — express that solution in a language

... how do you learn it? Studying good examples, practice,
and experimentation

Presenter
Presentation Notes
The process and how you do it?

Steps

1 Hoat owen to 375FF.

2 Mix sugars, butter, vanilia and agg in lange bowl. SHrin four, baking soda and salt ([dough
will be SN S in mats and chooodate chips.

. '-‘,_-; *-T_’“"

4 Eake B 010 minutes or until Bght brown (oenbers will be soft). Cool sighthy, remove from
cookie sheat. Cool on wire 2ok

Presenter
Presentation Notes
To make you hungry, but also as an analogy, you can think of an algorithm as the steps in a recipe and the measurements (cups or their metric equivalent) as syntax.

As a programmer you are problem solving — defining
the Instructions (algorithm is the first step)

Presenter
Presentation Notes
Sometimes the problems are simple enough that this algorithm is in your head. As we get to more complex problems it is beneficial to write down the outline to see where problems might occur.

In-class Exercise

Presenter
Presentation Notes
You need to take these three items across a river in a boat. Your boat is small and only fits two items.
If left alone, the dog will eat the goat, the goat will eat the cabbage. How do you cross? Write an algorithm.

In-class Exercise

(can be found in 18 century writings, although they use a wolf)

Anaylsis — what can you leave behind? The dog does
not eat cabbage

Algorithm

Start on side A

Take the goat over to side B
Return alone to side A

Take the cabbage over to side B
Return with goat to side A

Take the dog to side B

Return alone to side A

Take the goat to side B

Presenter
Presentation Notes
You need to take these three items across a river in a boat. Your boat is small and only fits two items.
If left alone, the dog will eat the goat, the goat will eat the cabbage. How do you cross? Write an algorithm.
Not that you are likely to encounter this problem in real life it does illustrate some properties of an algorithm.

Steps lead to completion
Unambiguous

Appropriate level of detall
Well ordered instructions

Covers all possible outcomes

Presenter
Presentation Notes
Notice that it would not matter if you took the cabbage or the dog next, so there are two reasonable solutions. Both have and properties of solving the problem.

Algorithm Is a general term for
a clear concise finite set of
Instructions to solve a problem

Presenter
Presentation Notes
An algorithm should be code independent. Rather than using the goat or recipe analogy, let’s look at a sunflower.

Vogel 1979

r = c * sqrt(n) theta = n* 137.508
e r IS the radius from center
* N IS the number of the floret from center

e theta is the angle

Describes the head of a sunflower

Presenter
Presentation Notes
Code independent.
Spiral patterns in nature have long intrigued botanists and mathematicians and this has led to many models of phyllotaxis, both descriptive and explanatory.

phyllotaxis

by drspiral

-

Lt

w450, 1

|tnta|£!!l1
—r—

angle [Fi7]

i

spread 1

i

SCRATCH

~ e

o

Demonstration of the spiral phyllotactic pattern as described by

Notes and Credits

Vogel 1979 and shown in The Algonthmic Beauty of Plants.

@ Shared: 11 Sep 2011 Modified

11 Sep 201

Presenter
Presentation Notes
For example, in Scratch. The basic formula is used to produce a pattern. Note the equations are highlighted in yellow.

sunflower
by drspiral

Here the pattern has
different geometry to
appear more like a
sunflower

Presenter
Presentation Notes
Replacing the spheres in the pattern with different geometry make it appear more like a sunflower.

Spiral Phyllotaxis Demo

Example for VSFX 705

Turtle Sunflowers - Introduce Phyllotactic Pattern
def drawPetall =%, v):

turtle.up()

turtle.=setpos (X, V)

turtle.down ()

turtle.begin fill({()

$turtle.fill (True)

turtle.pen{outline=1, pencolor="black",fillcolor="yellow")
turtle.right (20)

Author: Deborah R. Fowler

March 21, 2013
Based on original code in C 1989 using Silicon Graphics Workstations and gl

= ok e e e She he S chE

import math

import turtle turtle.forward (100)
turtle.left (40)
def drawPhyllotacticPattern{ t, petalstart, angle = 137.508, size = 2, cspread = 4): turtle.forward (100)
nrrprint a pattern of circles using spiral phyllotactic daca™" "™ turtle.lefr (140)
4 initialize position turtle.forward (100)
turtle.pen(outline=1l,pencolor="kblack”,fillcolor="oranges") curtle.left (40)
$# turtle.color ("orange") turtle. forward (100)
phi = angle * (math.pi / 180.0) turtle.up ()
xcenter = 0.0 turtle.end fill() # this is needed to complete the last petal

veenter = 0.0

for loops iterate in this case from the first walue until < 4, =o

for nm in range (0,t): turtle.shape ("turctle™)
r = cspread * math.sgrt (n) turtle.speed(0) # make the turtle go as fast as possible
theta = n * phi drawPhyllotacticPattern(200, 160, 137.508, 4, 10)

turtle.exitonclick() # lets yvou X out of the window when outside of idle
X = r * math.cos(theta) + Xcenter
¥y = r * math.=sin(theta) + vcenter

move the turtle to that position and dres
turcle.up()
turtle.setpos (X, V)
turtle.down ()
orient the turtle correctly
turtle.setheading(n * angle)
if n > petalstartc-1:
$turtle.color ("yellow™)
drawPetal (X, ¥)
el=se: turtle.stamp()

Created in python

Presenter
Presentation Notes
You can also implement this is python (using turtle graphics and tkinter)

®)

/Il Date: March 22, 2013 ?mc phyllotaxis()

i

/I This is the phyllotactic pattern as described by Vogel in Biomathematics 1979, and used in The Alorithmic Be // ?e|fte|:3"¥‘ existing geometry - this is intended as a stand alone demo

il select -all;

/I Inputs: GUI Mel interface for amount, size, spread and angle delete;

/Il Qutput: Pattern of spheres on a disc optimally packed

I /I Get the values from the GUI interface

int $total = “intSliderGrp -q -value fotal";

if (“window -exists myWindow") deleteUl myWindow: float $size = ‘ﬂoatSIiderGrp -q -value size’;
window -title "Spiral Phyllotaxis” -widthHeight 500 200 myWindow: float $c = “floatSliderGrp -q -value spread’;
columnLayout -adj on: float $angle = “floatSliderGrp -q -value angle’;
ntSliderGrp -label "amount” -min 1 -max 5000 -value 100 -field true -changeCommand "phyllotaxis" total; o]) _
floatSliderGrp -label "size” -min 1 -max 60 -value 2 -field true -changeCommand "phyllotaxis” size: i Calcule_ite the positions in the spiral phyllotactic pattern
floatSliderGrp -label "size” -min 1 -max 20 -value 2 -field true -changeCommand "phyllotaxis” spread; float $phi;
floatSliderGrp -label "angle" -min 0 -max 360 -value 137 508 -pre 3 -field true -changeCommand "phyllotaxis" angle; float $r,

showWindow myWindow; float $theta;

float $x, Sy, $xcenter, $ycenter;
float $P1 = 3.14159265359;

$phi = $angle * ($PI/180.0):
$xcenter = 0.0;
$ycenter = 0.0;

for ($n=0; $n < S$total; $n++)
{
$r=3%c * sqrt($n);
$theta = $n * $phi;
$x = $r * cos($theta) + $xcenter;

C re ate d I n M a.ya/m e I $y = $r * sin($theta) + $ycenter;

/I draw a sphere or whatever object you'd like at this position
sphere -r $size -p $x Sy O
}
}

phyllotaxis();

Presenter
Presentation Notes
Or maya using mel

Houdini ... with two expressions right in the interface

File Edit Render Windows Assets Help

Create Modify Model Polygon Deform | Texture

t . '; S = s
Box 5 Tube Tarus eta

Scene iew
= =

: View

Q\

e 1« 4 0 P> i

Volurme

+ v

Lights and..

Camera Pai

Auto Takes Main - .

Particles ~ Grains Rigid Bodies Particle Fiu.. Viscous Fl Populate C.. ontainer PyroFX. Cloth Solid Wires: Crowds™ Drive Simu +

3 o -

* @& f iy Mm N ® Gz <

nt Light - Spot Light Area Light Geometry L Dista ight - Environmen.: Sky Light Gl Light Cawstic Light Portal Light AmbientLig Sterena Cam... VA Camera Switcher
Take List ®. Performance Monito

b. obj W sphere

4t Copy copyl
Source Group
Template Group
Copy Stamp Attribute
Number of Copies 1006
¥ Transform Using Template Point Attributes
Transform Cumulative
Transform Order Scale Rot Trans - Rx Ry Rz
Translete sqrt{$C€Y) * cos($CY * 137.508) sqrt($CY) * sin($CY * 137.508)
Rotate
Scale
Shear
Tree View x

= | %o obj By sphere

EEEH EF S

'1240 S ©oYe

L ¥ Auto Update

v

Presenter
Presentation Notes
Or in Houdini using expression right in the interface

... and more

» Hscript expressions (houdini script)

* Python expressions (as above but with python)

e Python with HOM (Houdini Object Module) think PyMel
* Vex (wrangle nodes/vex code) think rsl or C++

e |-systems (formal grammar)

* And so on

Presenter
Presentation Notes
Or other ways of communicating with the software, for example hscript, python vex, vexpressions or vex snippets or even l-systems.

Presenter
Presentation Notes
We will return to Houdini later in the quarter. First let’s talk about good code habits.

CODE HABITS

Presenter
Presentation Notes
After you have an algorithm. It is time to implement it in code. (not the cake or the goat problem). Let’s get back to python
Another concept I want to cover today is Coding Standards.
Code in python relies on format to delinate, however there are some important things to remember.

Variable names
 meaningful

e add to the code readability
e (self-documenting code)

Presenter
Presentation Notes
After you have an algorithm. It is time to implement it in code. (not the cake or the goat problem). Let’s get back to python
Another concept I want to cover today is Coding Standards.
Code in python relies on format to delinate, however there are some important things to remember.

Not Good: hps, av, s
Good: hitsPerSecond, average, score

king_snake camelFace

Presenter
Presentation Notes
Variable names that are meaningful help code readability. You may use either snake case or camel case but pick one and try to be consistent. Generally speaking, camel case tends to be used in the game industry, snake case is older (and what I grew up on).

>>> X = 0

e oH = ®m o+ 1
% X 4= 1 shorthand
>3 print x

2

-

_ o T

Syntactic sugar 5mn X+

oyntaxError g 5
e

2

>>»> print x

2

-

Presenter
Presentation Notes
Syntactic sugar are constructs that are added to languages that don’t create more functionality but are useful

e * /04 then

o | -
Order of e Leftto right in expression
Operators e Use () when in doubt!
Precedence 53> 5 4 2 & 3
11
=2m (5 4+ 2) 3

Presenter
Presentation Notes
Overview of the concepts covered

Presenter
Presentation Notes
12000
200 * 60

Summary

Algorithm — a clear concise plan, not specific to a
particular language syntax

Habits
e Human readable code — variables, comments
 Modularity — build in chunks

Presenter
Presentation Notes
It is very important to have a clear plan. Then build modularly in small pieces. Always build on working code! Test as you go. As your textbook states – get something working and keep it working!

homework:

You may start on the quilting exercise (E1)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	�������Programming requires �clear and careful creative thinking �����������������
	Slide Number 5
	�What is Programming?
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Vogel 1979
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	… and more
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	homework:

